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Genetic Programming Design of Locally 
Weighted GMDH for Wind Power Generation 

Prediction  
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Abstract— The intermittent nature of the wind creates significant uncertainty in the operation of power systems with increased wind power 
penetration. Considerable efforts have been made for the accurate prediction of the wind power considered one of the most rapidly growing 
sources of electricity generation all over the world. This paper proposes a new approach for wind power prediction. The proposed method 
is derived by integrating the genetic programming (GP) with locally weighted group method of data handling (LWGMDH). In the proposed 
model, KPCA is used to extract features of the inputs and obtain kernel principal components for constructing the phase space of the 
multivariate time series of the inputs. The weighting function’s bandwidth which plays a very important role in local modelling is optimized 
by the weighted distance algorithm Moreover, the GP algorithm is employed to optimize the structure of the GMDH network. Then 
optimized LWGMDH is employed to solve the wind power prediction problem. The proposed model is evaluated using real world dataset. 
The results show that the proposed method provides a much better prediction performance in comparison with other models employing the 
same data. 

Index Terms— Genetic programming, Wind power prediction, local predictors, optimized locally weighted group method of data handling, 
weighted distance, kernel principal component analysis, state space reconstruction.  

——————————      —————————— 

1 INTRODUCTION                                                                     
IGH penetration of wind power in the electricity system 
provides a number of challenges to the grid operator, 
mainly due to the intermittency of wind. Since the pow-

er produced by a wind farm depends critically on the volatili-
ty of wind, unexpected variations of a wind farm output may 
increase operating costs for the electricity system by increased 
requirements of primary reserves, as well as place potential 
risks to the reliability of electricity supply [1,2]. However, such 
methods cannot guarantee accurate prediction of wind pro-
duction variations; therefore, wind power forecasting tools 
become very important.  

Various methods have been identified for wind power 
prediction. They can be categorized into physical methods, 
statistical methods, methods based upon artificial intelligence 
(AI) and hybrid approaches [3-7]. 

The Group Method of Data Handling (GMDH) is a selfor-
ganizing method that was firstly developed by Ivakhnenko 
[8].The main idea of GMDH is to build an analytical function 
in a feedforward network based on a quadratic node transfer 
function whose coefficients are obtained using a regression 
technique [9]. GMDH has been applied to solve many predic-
tion problems with success [10], [11]. 

All the above techniques are known as global time series 
predictors in which a predictor is trained using all data availa-
ble but give a prediction using a current data window. The 
global predictors suffer from some drawbacks. To overcome 
these drawbacks the local predictor based on support vector 
machine (SVR) method is proposed by us [12]. More details of 
the local predictors can be found in [13, 14]. To improve the 
accuracy of the proposed local predictors, the kernel principal 
component analysis (KPCA) [15, 16] method is used instead of 
the coordinate delay (CD) method [17] to phase space recon-
struction which is an important step in local prediction meth-
ods [14].  

To avoid the limitations of the existing methods and in 
order to follow the latest developments to have a modern sys-
tem, a new method is proposed by us using an alternative ma-
chine learning technique which is called locally weighted 
group method of data handling (LWGMDH) [18]. This method 
is derived by combining the GMDH with the local regression 
method and weighted least squares regression and employing 
the weighted distance algorithm which uses the Mahalanobis 
distance to optimize the weighting function’s bandwidth. In 
addition, the phase space is reconstructed based on KPCA 
method, so that the problem of the traditional time series re-
construction techniques can be avoided [18].  

While providing a useful systematic design procedure, 
conventional GMDH used in LWGMDH [18] has some draw-
backs [19]. First, it tends to generate quite complex polynomial 
for relatively simple systems (data). Second, it also tends to 
produce an exceedingly complex network when it comes to 
highly nonlinear systems due to its limited generic structure 
(quadratic two-variable polynomial) [20]. To overcome these 
drawbacks, a number of researchers have attempted to hybrid-
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ise GMDH with some evolutionary optimisation techniques 
such as genetic algorithm (GA) [21] which showed that the 
proposed framework performs better than conventional 
GMDH method. 

Genetic programming (GP) is viewed by many research-
ers as a specialisation of genetic algorithms. The population of 
genetic programming individuals is constructed as tree-
structured expressions. The tree structure of individuals al-
lows genetic programming to vary its size and shape, thus, 
achieving a high efficiency in searching of a solution space 
with respect to what genetic algorithms are able to do [22]. 

In order to solve the wind power prediction problem, a 
new design approach of LWGMDH based GP is proposed in 
this paper. In the proposed model, the phase space is recon-
structed based on KPCA method. Then the weighted distance 
algorithm which uses the Mahalanobis distance is employed 
to optimize the weighting function’s bandwidth. In addition, 
the GP algorithm used to design the whole architecture of the 
LWGMDH network. The proposed method has been evaluat-
ed using real world dataset. 

The paper is organized as follows: Section 2 describes the 
time series reconstruction based on KPCA method. Section 3 
reviews the LWGMDH algorithm. Section 4 describes the 
weighted distance algorithm. Genetic programming algo-
rithmm is introduces in Section 5. Section 6 describes the GP 
design of GMDH. Then the GP design of LWGMDH is intro-
dusec in Section 7. Experimental results and comparisons with 
other methods are presented in Section 8. Finally, Section 9 
concludes the work. 

2 TIME SERIES RECONSTRUCTION BASED ON KPCA 
In recent years, to process nonlinear time series, KPCA is 

used to overcome the CD method problem [16]. In KPCA the 
computations are performed in a feature space that is nonline-
arly related to the input space. This feature space is defined by 
an inner product kernel in accordance with Mercer’s theorem 
[23]. However, unlike other forms of nonlinear PCA, the im-
plementation of KPCA relies on linear algebra by mapping the 
original inputs into a highdimensional feature space via a ker-
nel map, which makes data structure more linear. In this pa-
per, the commonly used Gaussian kernel is employed. The 
detail introduction of the basic KPCA can be viewed in [14, 23] 

3 LOCALLY WEIGHTED GROUP METHOD OF DATA 
HANDLING (LWGMDH) 

 
The LWGMDH method is derived by combining the 

GMDH with the local regression method and weighted least 
squares (WLS) regression. To predict the output values ŷ for 
each query point (    ) belongs to the testing set, the GMDH 
will be trained using the K nearest neighbors only (1 < K << N) 
of this      . The coefficient parameters is calculated using WLS 
regression where each point in the neighborhood is weighted 
according to its distance from the       . The points that are close 

to      have large weights and the points far from       have small 
weights 

Overall, the framework of the design procedure of the 
LWGMDH comes as a sequence of the following steps [18]. 
• Step 1: Reconstruct the time series: load the multivariate 

time series dataset ))(.......(),(( ..),21 txtxtxX M= , (t=1,2, 
…, N). Using the KPCA method to calculate the number of 
principal components of each dataset (we set the time de-
lay constant of all datasets equal to 1). Then, reconstruct 
the multivariate time series using these values. 

• Step 2: Form a training and validation data: The input da-
taset after reconstruction x~  is divided into two parts, that 
is a training trx~ dataset and validation vax~  dataset the size 
of the training dataset is trN while the size of the valida-
tion dataset is vaN . 

• Step 3: For each query point qx , choosing the K nearest 
neighbors of this query point using the Euclidian distance 
between qx  and each point in )1(~

trtr NKX <<< . 
• Step 4: Create the first layer: using the K nearest neighbors 

only, all combinations of the inputs are generated based on 
the following equation: 
 

2
5

2
43210

~
jijiji xaxaxxaxaxaay +++++=             (1) 

 
 where x belongs to the original dataset which consists of 
M columns of the values of the system input variables that 
is NttxtxtxX M ,...,2,1()),(),.....,(),(( 21 == ) and a column 
of the observed values of the output and N is the length of 
the dataset. Then these combinations are sent into the first 
layer of the network.    

• Step 5: Estimate the coefficient parameters of each node: 
the vector of coefficient ),,,,( 54310 aaaaaA  is derived by 
minimizing the locally weighted mean squared error 
 

                                                                                        (2) 
 

 
where w is the weighting function. Meany weighting func-
tions are proposed by the researchers [24]. Out of theses 
weighting functions, Gaussian kernel, tricube kernel and 
quadratic kernel are the most popular [24]. In this work, we 
employ the commonly used Gaussian kernel weighting 
function as following: 

 
 
                                                                                         (3) 
 

where      is the query point, ix is a data point belongs the 
nearest neighbors points of       and h is the band width pa-
rameters which plays an important role in local modeling. 
An optimization method for the bandwidth is discussed in 
the next section in the paper. The weighted laest square so-
lution of (Eq. 2) is given by: 
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where W is the diagonal matrix with diagonal elements 
iii wW = and zeros elsewhere [24], T

Kyyyy ]...,,,[ 21= , 
],,,,,[ 543210 aaaaaaA = , X is defined in the last section 

but with number of rows equal to K (the number of the 
nearest) neighbors. This procedure is implemented repeat-
edly for all nodes of the layer.  

• Step 6: Select the nodes with the best predictive capability 
to create the next layer: Each node in the current layer is 
evaluated using the training and validation datasets. Then 
the nodes which gives the best predictive performance for 
the output variable are chosen for input into the next layer 
with all combinations of the selected nodes based on (Eq. 
1) being sent into next layer. In this paper, we use a prede-
termined number of these nodes. The coefficients parame-
ters of each node in this layer can be estimated using the 
same procedures in step (5).  

• Step 7: Check the stopping criterion: The modeling can be 
terminated when:  

           ll ee ≥+1                                               (5) 
 

where 1+le is the minimal identification error of the current 
layer while le is a minimal identification error of the pre-
vious layer. So that the previous layer (l) best node is then 
used as the final solution of the current query point. If the 
stooping criterion is not satisfied, the model has to be ex-
pended. The steps 6 to 7 can be repeated until the stooping 
criterion is satisfied.  

• Step 8: Then, the steps 3 to 7 can be repeated until the fu-
ture values of different query points are all acquired.  

4 WEIGHTED DISTANCE ALGORITHM FOR OPTIMIZING 
THE BANDWIDTH 
The weighting function bandwidth (h) is a very important 

parameter which plays an important role in local modeling. If 
h is infinite then the local modeling becomes global. On the 
other hand, if h is too small, then it is possible that we will not 
have an adequate number of data points in the neighborhood 
for a good prediction.  

There are several ways to use this parameter like, constant 
bandwidth selection, nearest neighbor bandwidth selection 
where h is set to be a distance between the query point and the 
Kth nearest point, global bandwidth selection where h is calcu-
lated globally by an optimization process, etc [24].  

The constant bandwidth selection method where training 
data with constant size and shape are used is the easiest and 
common way to adjust the radius of the weighting function. 
However, its performance is unsatisfactory for nonlinear sys-
tem as density and distribution of data points are unlikely to 
be identical very place of the data set [25]. In this paper, we 
used the weighted distance algorithm which uses the Ma-
halanobis distance metric for optimizing the bandwidth (h) to 
improve the accuracy of our proposed method. 

With the Mahalanobis distance metric, the problem of scale 
and correlation inherent in Euclidean distance are no longer 
an issue. In the Euclidean distance, the set of points which 

have equal distance from a given location is a sphere. The Ma-
halanobis distance metric stretches this sphere correct for the 
respective scales of the different variables. More details about 
weighted distance algoritrhm can be found in [18].  

5   GENETIC PROGRAMMING (GP) 
Genetic programming (GP) is an evolutionary computa-

tion technique that automatically solves problems without 
having to tell the computer explicitly how to do it. At the most 
abstract level GP is a systematic, domain-independent method 
for getting computers to automatically solve problems starting 
from a high-level statement of what needs to be done. 
Over the last decade, GP has attracted the interest of streams 
of researchers around the globe.  

Technically, GP is a special evolutionary algorithm (EA) 
where the individuals in the population are computer pro-
grams. So, generation by generation GP iteratively transforms 
populations of programs into other populations of programs 
[26]. During the process, GP constructs new programs by ap-
plying genetic operations which are specialized to act on com-
puter programs 

Algorithmically, GP comprises the steps shown in Algo-
rithm 1 [26]. The main genetic operations involved in GP (line 
5 of Algorithm 1) are the following: 
• Crossover: the creation of one or two offspring programs 

by recombining randomly chosen parts from two selected 
programs. 

• Mutation: the creation of one new offspring program by 
randomly altering a randomly chosen part of one selected 
program. 
 

Algorithm 1 Abstract GP algorithm. 
1: Randomly create an initial population of programs from 

the available primitives. 
2: Repeat 
3: Execute each program and ascertain its fitness. 
4: Select one or two program(s) from the population with a 

probability based on fitness to participate in genetic 
operations. 

5: Create new individual program(s) by applying genetic 
operations with specified probabilities. 

6: Until an acceptable solution is found or some other stop-
ping condition is met (e.g., reaching a maximum num-
ber of generations). 

7: Return the best-so-far individual. 
 
In GP programs, the chromosomes are usually expressed 

as syntax trees rather than as lines of code. Figure 1 shows, for 
example, the tree representation of the program max (x*x, 
x+3*y). 

Like in most other EAs, genetic operators in GP are applied 
to individuals that are probabilistically selected based on fit-
ness. That is, better individuals are more likely to have more 
child programs than inferior individuals. The most commonly 
employed method for selecting individuals in GP is tourna-
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ment selection [25]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given two indiviuals (parents), subtree crossover 
randomly selects a crossover point in each parent tree. Then, it 
creates the offspring by replacing the sub-tree rooted at the 
crossover point in a copy of the first parent with a copy of the 
sub-tree rooted at the crossover point in the second parent, as 
illustrated in Figure 2 [26]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The most commonly used form of mutation in GP (which 

we will call subtree mutation) randomly selects a mutation 
point in a tree and substitutes the sub-tree rooted there with a 
randomly generated sub-tree. This is illustrated in Figure 3 
[26]. 

 
 
 
 
 
 
 
 
 
 
 
 

6 GENETIC PROGRAMMING DESIGN OF GMDH 
6.1 GP Algorithm 

In a nutshell, GP algorithm is described below [27]: 
• Step1: Initialize a population of tree expressions. 
• Step2: Evaluate each expression in the population so as    

to derive the MDL-based fitness. 
• Step3: Create new expressions (children) by mating cur-

rent expressions. With a given probability, apply muta-
tion and crossover to generate the child tree expres-
sions. 

• Step4: Replace the members of the population with the 
child trees. 

• Step5: Execute the GMDH process, so as to compute the 
coefficients of the intermediate nodes of the child trees. 

• Step6: If the termination criterion is satisfied, then halt; 
else go to Step2. 

In Step 5, the coefficients of the child trees are re-
calculated using the GMDH process. However, this re-
calculation is performed only on intermediate nodes, upon 
whose descendant’s crossover or mutation operators were 
applied. Therefore, the computational burden of Step5 is ex-
pected to be reduced as the generations proceed.  

6.2 GMDH Process in GP 
GP constructs a feedforward network, as it estimates the 

output function f . The node transfer functions are simple 
(e.g. quadratic) polynomials of the two input variables, whose 
parameters are obtained using regression techniques. 

As an example of a binary tree generated by GP, suppose 
that the upper left parent tree (P1) is written as a (Lisp) S-
expression, 
(NODE1 
       (NODE2 

(NODE3 (x1) (x2)) 
(x3) 

        (x4))) 
where x1,x2,x3,x4 are the input variables. Intermediate nodes 
represent simple polynomial relationships between two de-
scendant (lower) nodes. This tree expresses a “complete form” 
y given by the GMDH process as follows: 

1- Select two variables x1 and x2 and form an expression 
Gx1,x2 which approximates the output y (in terms of x1 
and x2) with the least error using the multiple regres-
sion technique. Regard this function as a new variable 
z1 (i.e. the new intermediate node NODE3), 
 

                     (6) 
 

2- Select two variables z1 and x3 and form an approxi-
mating expression Gz1,x3 in the same way. Regard this 
function as a new variable z2 (i.e. the new intermedi-
ate node NODE2), 

          
                            (7) 

 

Fig. 1 GP syntax tree representing max(x*x, x+3y) 

 

Fig. 2 Example of subtree crossover  

 

Fig. 3 Example of subtree mutation 

),( 21,1 21
xxGz xx=

),( 31,2 31
xzGz xz=
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3- Select two variables z2 and x4 and form an approxi-
mating expression Gz2,x4. Regard this function as a 
“complete form” y, (i.e. the root node NODE1), 
 
                                                                                 (8) 

For the sake of simplicity, we assume quadratic expressions 
for the intermediate nodes. Thus each node records the infor-
mation derived by the following equations: 
 
                                               (9) 
                  
                                                                               (10) 
 
 
                                                                                              (11) 
where z1 and z2 are intermediate variables, and 1y  is an ap-
proximation of the output, i.e. the complete form. These equa-
tions are called “subexpressions”.All coefficients (a0, a1, · · ·, 
c5) are derived from multiple regression analysis using a given 
set of observations. For instance, the coefficients ai in the equa-
tion (9) is calculated using the least square method as in equa-
tion (4). Suppose that N data triples (x1,x2,y) are supplied from 
observation, e.g.: 

Note that all node coefficients are derived locally. For in-
stance, consider bi’s of NODE2. When applying the multiple-
regression analysis to the equation (10), these bi’s are calculat-
ed from the values of z1 and x3 (i.e. the two lower nodes), not 
from x4 or y1 (i.e. the upper node). Therefore, the GMDH pro-
cess in GP can be regarded as a local-hill climbing search, in 
the sense that the coefficients of a node are dependent only on 
its two descendent (lower) nodes. 

6.3 Crossover in GP 
We now consider the recombination of binary trees in GP. 

Suppose two parent trees P1 and P2 are selected for recombi-
nation (Fig.4). Besides the above equations, internal nodes rec-
ord polynomial relationships as listed below [27]: 

 
 

 
 
 
 
 
 
 
 
 
 

 

 
           

   

             (12) 
 

                                              (13) 
             

           (14) 

Suppose z1 in P1 and x1 in P2 (shaded portions in Fig.4) 
are selected as crossover points in the respective parent trees. 
This gives rises to the two child trees C1 and C2 (lower part of 
Fig.4). The internal nodes represent the following relations: 
 

           (15) 
             

           (16) 
             

          (17) 
                        

           (18) 
             

           (19) 
            

           (20) 

Since these expressions are derived from multiple re-
gresion analysis, we have the following equations: 

 
                         (21) 

 
                                           (22) 
 

Thus, when applying crossover operations, we need only 
derive polynomial relations for 2131 ,,, yyzz ′′′′ . In other words, 
recalculation of the node coefficients for the replaced subtree (

2z′ ) and non-replaced subtree ( 4z′ ) is not required, which re-
duces much of the computational burden in GP. 

6.4 Mutation in GP 
When applying mutation operations, we consider the fol-

lowing cases: 
• A terminal node (i.e. an input variable) is mutated to an-

other terminal node (i.e. another input variable). 
• A terminal node (i.e. an input variable) is mutated to a non-

terminal node (i.e. a subexpression). 
• A nonterminal node (i.e. a subexpression) is mutated to a 

terminal node (i.e. an input variable). 
• A nonterminal node (i.e. a subexpression) is mutated to 

another nonterminal node (i.e. another subexpression). 

6.5 FitnessEvaluation in GP 
GP uses a Minimum Description Length (MDL)-based fit-

ness function for evaluating the tree structures. This fitness 
definition involves a tradeoff between certain structural de-
tails of the tree, and its fitting (or classification) errors [27]. 
 

),( 42, 42
xzGy xz=

2
25

2
14213221101:3 xaxaxxaxaxaazNODE +++++=

2
35

2
14313321102:2 xbzbxzbxbzbbzNODE +++++=

2
45

2
24423422101:1 xczcxzcxczccyNODE +++++=

 

Fig. 4 Crossover operation in GP 
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MDL fitness = (Tree_Coding_Length) + (Excep   
tion_Coding_Length).                  (23) 

The MDL fitness definition for our binary tree is defined as 
follows: 
 
Tree_Coding_Length = 0.5 k log N                                     (24) 
Exception_Coding_Length = 0.5 N log S2N                            (25) 
 
where N is the number of input-output data pairs, S2N is the 
mean square error, i.e. 

                                                         
                         (26) 
 

and k is the number of parameters of the tree, e.g. the k-value 
for the tree P1 in Figure 4 is 6+6+6= 18 because each internal 
node has six parameters ),,,,,( 543210 aaaaaa  for NODE3 
etc). 

6.6 Overall Flow of GP 
The GP algorithm is described below: 
 
Input: tmax, I, Pop_size 
Output: x, the best individual ever found. 

1  t ← 0; 
{I is a set of input variables. NODE 2 is a nonterminal 
node of 2-arity.} 

2  P (t) ← initialize (Pop_size,I,{NODE_2}); 
3  F (t) ← evaluate (P (t),Pop_size); 
4  x ← a j(t) and Best_so_far ← MDL(a j(t)), where 

MDL(aj(t)) = min (F(t)); 
    {the main loop of selection, recombination, mutation.} 
5  while (ι (P (t), F (t), tmax) ≠ true) do 
6  for i ←1 to do (Pop_size/2) do 

             {Select parent candidates using the MDL values.} 
Parent1 ← select (P (t), F (t),Pop_size); 
Parent2 ← select (P (t), F (t),Pop_size); 
{Apply GP crossover operation.} 
            ,           ← GP_recombine (Parent1, Parent2); 

               {Apply GP mutation operation, i.e. changing a node 
label and deleting/inserting a subtree.} 

)(2 td i′′ ← GP_mutate ( )(2 ta i′ ); 
)(12 td i−′′ ← GP_mutate ( )(12 ta i−′ ); 

od 
7  )(tP ′′ ← ( )(1 ta ′′ , · · · ,                   ); 
8  F (t) ← evaluate( )(tP ′′ , Pop size); 
9  tmp ← )(tak′′ , where MDL( )(tak′′ = min(F(t)); 
10  if (Best so far > MDL( )(tak′′ )) 

then x ← tmp and Best so far ← MDL( )(tak′′ ));  
11  P (t +1) ← )(tP ′′ ; 
12  t ← t +1; 

od 
return (x); 
 
 
 
 

{terminate if more than tmax generations are over.} 
1  ι (P (t), F (t), tmax) : 
2  if (t > tmax) 

then return true; 
else return false; 
 

{initialize the population randomly.} 
1  initialize (Pop_size, T, F): 
2  for i ←1 to Pop_size do 

generate a tree ai randomly, 
where the terminal and nonterminal sets are T and F. 
od 
return (a1, · · · ,aPop_size); 
 

{evaluate of a population of size Pop_size.} 
1  evaluate (P (t), Pop_size): 
2  for i ←1 to Pop_size do 

{calculate eq.(26).} 
GMDH Process (ai); 

2
NS  

(ai) ← the mean square error of ai; 
{calculate eqs.(23),(24) and (25).} 
MDL(ai)←Tree Coding Length (ai) + Exception Cod-
ing Length (ai); 
od 
return (MDL(a1), · · · , MDL(aPop_size)); 
 

{execute the GMDH process.} 
1  GMDH Process (a): 
2  nd ← the root node of a; 
3  if (nd is a terminal node) 

then return; 
{if the node coefficients of nd are already derived, 
then return.} 

4  if (Coeff (nd) ≠ NULL) 
then return; 

5  nl ← left child (nd); 
6  nr ← right child (nd); 
7  GMDH Process (nl); 
8  GMDH Process (nr); 
9  Coeff (nd) ← Mult_Reg (nl,nr); 

return; 

7 GENETIC PROGRAMMING DESIGN OF LWGMDH 
The conventional GMDH whiched used with GP in Sec-

tion 6 has some drawbacks. These drawbacks have been dis-
cussed in Section 3. So, in order to solve the wind power pre-
diction problem, a new design approach of LWGMDH based 
GP is introduced. In the proposed model, the phase space is 
reconstructed based on KPCA method. Then the weighted 
distance algorithm which uses the Mahalanobis distance is 
employed to optimize the weighting function’s bandwidth. In 
addition, the GP algorithm used to design the whole architec-
ture of the LWGMDH network. 

Figure 5 presents the overall computation procedure 
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of the GP design of LWGMDH. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 EXPREMENT RESULTS 
8.1 Data 

To evaluate the performance of the proposed method, it 
has been tested for wind power prediction using the real data 
from wind farms in Alberta, Canada [28]. Alberta has the 
highest percentage of total installed wind generation capacity 
of any province in Canada. There are more than 40 wind pro-
jects proposed for future development in Alberta. Alberta in-
cludes many wind farms such as Ghost pine wind farm (own-
ing 51 turbines and 81.6 MW total capacity), Taber wind farm 
(owning 37 turbines and 81.4 MW total capacity), Wintering 
Hills wind farm (owning 55 turbines and 88 MW total capaci-
ty), etc [29]. The total wind power installed capacity in 2011 is 
800MW. This value will be raised to 893 MW by the most re-
sent governmental goals for the wind sector in 2012 [29].  

8.2 Parameters 
To implement a good model, there are some important pa-

rameters to choose. There are two important parameters in the 
KPCA algorithm which used to reconstruct the phase space 
these parameters are the number of principal components (nc) 
and w2 in the Gaussian kernel function. The optimal values of 
these parameters which computed using the cross validation 
method are w2=1.9 and nc=10.  

In the local prediction model, choosing the neighborhood 
size (K) is very important step. So, this parameters is calculat-
ed as describe in [13] where kmax and β are always fixed for all 
test cases at 45% of N and 80, respectively.   

8.3 Forcasting Accuracy Evaluation 
For all performed experiments, we quantified the predic-

tion performance with root mean square error (RMSE) and 
normalized mean absolute error (NMAE) criterion. They can 
be defined as: 

  
                                                                                    (24) 
 
 
                                                                                    (25) 

 
 
where hp̂  and hp are forecasted and actual electricity prices 
at hour h, respectively, instp is the installed wind power capac-
ity and N is the number of forecasted hours.  

8.4 Results and Discussion 
The proposed LWGMDH based GP (GP_LWGMDH) 

method has been applied for the prediction of the whole wind 
power in Alberta, Canada. The performance of the proposed 
method in compared with 4 published approaches employing 
the same dataset. These approaches are resistance, seasonal 
ARIMA (SARIMA), local radial basis function (LRBF) and 
LWGMDH. Historical wind power data are the only inputs for 
training the proposed method. For the sake of clear compari-
son, no exogenous variables are considered.  

The proposed GP_LWGMDH method predicts the value of 
the wind power subseries for one day ahead, taking into ac-
count the wind power data of the previous 3 months (the first 
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Fig. 5 Flowchart of the LWGMDH model based PG 
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80% values of these data are used for training, while the last 
20% values are used for validation). The length of the forecast 
horizon for the Alberta dataset is 24 hours. Four test weeks 
(Monday to Sunday) corresponding to four seasons of year 
2011 are randomly selected for this numerical experiment. 
These test weeks are: the second week of February 2011 as a 
winter week, the third week of May 2011 as a spring week, the 
second week of August 2011 as a summer wee, and the first 
week November 2011 as a fall week. 

The error (RMSE) and (NMAE) of each day during each 
testing week is calculated. Then the average error of each test-
ing week (Monday to Sunday) is calculated by averaging the 
seven error values of its corresponding forecast days. Finally, 
the overall mean performance for the four testing weeks for 
each method can be calculated. 

Table 1 shows a comparison between the proposed 
GP_LWGMDH method and four other approaches (persis-
tence, SARIMA, LRBF and LWGMDH), reading the RMSE 
criterion. These results show that the proposed method out-
performs other methods. Table 2 shows the RMSE improve-
ments of the GP_LWGMDH method over persistence, 
SARIME, LRBF and LWGMDH. Table 3 shows a comparison 
between the proposed LWGMDH method and other ap-
proaches, regarding the NMAE criterion. These results show 
the superiority of the proposed method over other methods. 
Table 4 shows the NMAE improvements of the 
GP_LWGMDH method over other 4 methods. 

 Figs. 6- 9 show the predicted hourly wind power versus 
the actual wind power of one day (as an example) of each test-
ing week using the proposed GP_LWGMDH method. These 
results show that our prediction values are very close to the 
actual values. 

 

 

 
 
 
 

 

 
The above results indicate that the proposed 

GP_LWGMDH method is less sensitivity to the wind power 
volatility than the other techniques used in the comparison. 

To further study the superiority of GP_LWGMDH method, 
it is also executed for all 52 weeks of year 2011 for the Alberta 
dataset and compared with three other approaches (Persis-
tence, SARIMA, LRBF and LWGMDH). The results show that 
the proposed GP_LWGMDH method improves the RMSE and 
NMAE for the 52 weeks of year 2011 over the Persistence, 
SARIMA, LRBF and LWGMDH methods.  

Table 5 shows the RMSE and NMAE improvements of the 
GP_LWGMDH method over Persistence, SARIMA, LRBF and 
LWGMDH. In addition, Fig. 10 shows the comparison be-
tween GP_LWGMDH method and other 4 methods methods 
for each month of year 2011 regarding RMSE criterion. Same 
results can be got using the NMAE criterion. 

These results show the robustness of the proposed 
GP_LWGMDH method and its performance in a long run for 
a complete year. 

9 CONCLUSION 
In this paper, we have proposed a LWGMDH based 

GP method for wind power prediction. In the proposed meth-
od, the KPCA method is used to reconstruct the time series 
phase space and the neighboring points are presented by Eu-
clidian distance for each query point. These neighboring 
points only can be used to train the GMDH where the coeffi-
cient parameters are calculated using the weighted least 
square (WLS) regression. In addition, the weighting function’s 
bandwidth which plays a very important role in local model-
ling is optimized by the weighted distance algorithm. In addi-
tion, the GP algorithm is employed to optimize the structure 
of the GMDH network. 

 

TABLE 4 
IMPROVEMENT OF THE GP_LWGMDH OVER OTHER AP-

PROACHES REGARDING NMAE 
 Average RMSE Improvement 

GP_LWGMDH 1.73 -- 
LWGMDH 1.99 13.07% 
Persistence 8.21 78.93% 
SARIMA 4.17 58.51% 

LRBF 2.54 31.89% 
 

TABLE 2 
IMPROVEMENT OF THE GP_LWGMDH OVER OTHER AP-

PROACHES REGARDING RMSE 
 Average RMSE Improvement 

GP_LWGMDH 3.69 -- 
LWGMDH 4.24 12.97% 
Persistence 16.83 78.08% 
SARIMA 8.82 58.16% 

LRBF 5.40 31.67% 
 

TABLE 3 
COMPARATIVE NMAE RESULTS 

 Winter Springs Sum-
mer 

Fall Aver-
age 

Persistence 6.59 7.66 7.51 11.07 8.21 
SARIMA 3.21 3.09 3.84 6.53 4.17 

LRBF 2.38 2.31 2.20 3.26 2.54 
LWGMDH 1.94 1.85 1.71 2.48 1.99 

GP_LWGMD 1.70 1.57 1.42 2.21 1.73 
 

TABLE 1 
COMPARATIVE RMSE RESULTS 

 Winter Springs Sum-
mer 

Fall Aver-
age 

Persistence 13.71 16.19 14.42 22.99 16.83 
SARIMA 6.70 6.59 8.09 13.88 8.82 

LRBF 5.03 4.85 4.76 6.97 5.40 
LWGMDH 4.01 3.90 3.72 5.32 4.24 

GP_LWGMD 3.33 3.50 2.99 4.92 3.69 
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By using the KPCA the drawback of the traditional time 

series reconstruction techniques can be avoided. Also, by 
combining GMDH with the local regression method the 
drawbacks of global methods can be overcome. In addition, by 
using the WLS, each point in the neighborhood is weighted 
according to its distance from the current query point. Moreo-
ver, by using the weighted distance algorithm, the disad-
vantage of using the weighting functions bandwidth as a fixed 
value can be overcome. This has led to improve the accuracy 
of the proposed model. 

Moreover, by using the GP with LWGMDH the drawbacks 
of conventional GMDH is overcome and the accuracy of the 
proposed algorithm has been improved. 

TABLE 5 
IMPROVEMENT OF THE GP_LWGMDH OVER OTHER AP-

PROACHES FOR ALL 52 WEEKS OF YEAR 2011 
 RMSE Improvement NMAE Improve-

ment 
GP_LWGMDH -- -- 

LWGMDH 12.51% 12.72% 
Persistence 77.98 % 78.30% 
SARIMA 58.01 % 58.11% 

LRBF 30.99% 31.26% 
 

 

Fig. 6 Forecasted and actual hourly wind power for February 9, 2011 

 

Fig. 7 Forecasted and actual hourly wind power for May 17, 2011 

 

Fig. 8 Forecasted and actual hourly wind power for August 11, 2011 

 

Fig. 9 Forecasted and actual hourly wind power for November 3, 2011 

 

Fig. 10 RMSE Results for the Year Of 2011 for all methods  
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A real world dataset has been used to evaluate the perfor-
mance of the proposed model which has been compared with 
Persistence, SARIMA, LRBF and LWGMDH methods. The 
numerical results show the superiority of the proposed model 
over Persistence, SARIMA, LRBF and LWGMDH methods 
based on different measuring errors. 
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